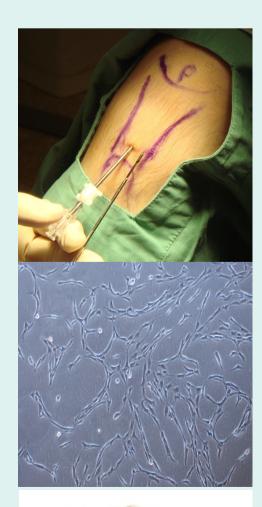


ANALYSES OF BIOPSIED TISSUES IN AUTOLOGOUS TENOCYTE THERAPY FOR TREATMENT OF TENDINOPATHY

ortho cell advancing tissue repair & regeneration

Katie Wang¹, Maurizio Damiani², Tak Cheng^{3,4}, Euphemie Landao-Bassonga³, Clair Lee^{3,4}, Ming Hao Zheng³ ¹Royal Perth Hospital, WA; ²Damiani Orthopedics, Australian National University Medical School, ACT; ³Centre for Orthopaedic Research, The University of Western Australia, WA; ⁴Orthocell Ltd, Murdoch, WA; ⁵Perron Institute for Neurological and Translational Science, WA.


BACKGROUND

Chronic degenerative tendon injury is a significant unmet clinical need with considerable socio-economic consequences. First-line treatment is conservative and includes rest, physiotherapy, corticosteroid injection, and bracing.^[1-3] Patients who do not recover after 6months of conservative treatment often require surgical intervention.^[4-6] In the context of an aging population, there is demand for new treatments that are safe, minimally invasive (non-surgical), effective and cost efficient.

Autologous tendon cell injection (ATI) is a promising novel non-surgical treatment for tendinopathies. ATI

- Prevents progression to surgery by restoring tendon structure and function
- Replenishes degenerative tissue with patients' own healthy tendon cells
- significant studies^[7-11] Clinical demonstrate strength and functional improvements in pain, outcome measures.
- Podium presentation (Sunday 18 June 14:15) RCT study using ATI for treatment of rotator cuff tendinopathy.

ATI – Two-stage, Minimally Invasive Outpatient Procedure⁷

1. Tendon biopsy Healthy tendon tissue

biopsy via minimally invasive procedure.

2. Tendon cell cultivation

Healthy tendon cells extracted and expanded in GMP facility.

3. Tendon cell injection

Ultrasound guided

injection of healthy

injury.

Good Manufacturing Practice (GMP)

tendon cells to tendon

OBJECTIVES

The objectives of this study were to compare the differences between tendons cells isolated from patella (PT) and palmaris longus (PL) tendons:

- A. Tendon cell morphology
- B. Tendon cell growth characteristics
- of tendon cells
- D. Age effect on tendon cell growth characteristics and quality attributes.

Purity ensures the product doesn't contain impurities which may lead to adverse reactions and does not contain undesirable cell type(s). **Potency** ensure the project performs the function for which it is intended.

Identity ensures that the product contains cells of the desired phenotype i.e. tendon-derived cells

PATIENT COHORT

The cohort (N=149) included patients who underwent biopsy of PT or PL, and underwent ATI between 2020 and 2022.

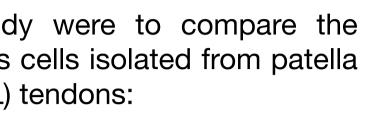
	PT (N=63)	PL (N=86)	P-value
*Gender			
Female	28 (44.4%)	28 (32.6%)	P=0.139
§Age (years)			
Mean±SD	48.89±11.13	47.12±8.39	
Median (IQR)	50.0 (11)	47.5 (13)	P=0.085
Range	22-75	31-64	

^Independent samples proportion test [§]Two-sided Student's T-test (parametric) or Mann-Whitney U (non-parametric)

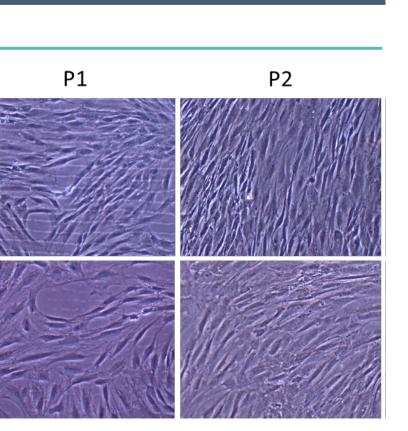
RESULTS

4-5 week

end-to-


end

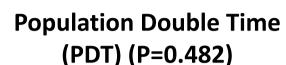
process

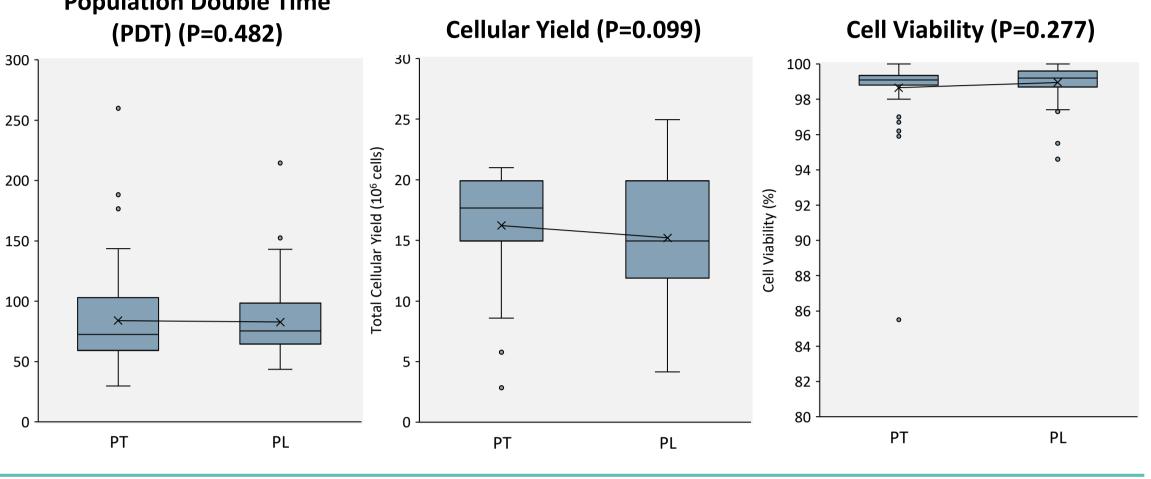

Morphology

No observable difference in morphology in tendon cells from PT and PL. Both exhibited same spindle-shaped morphology.

Email of Presenting Author: katie.wang@health.wa.gov.au

C. Purity, Potency, and Identity (PPI) quality attributes

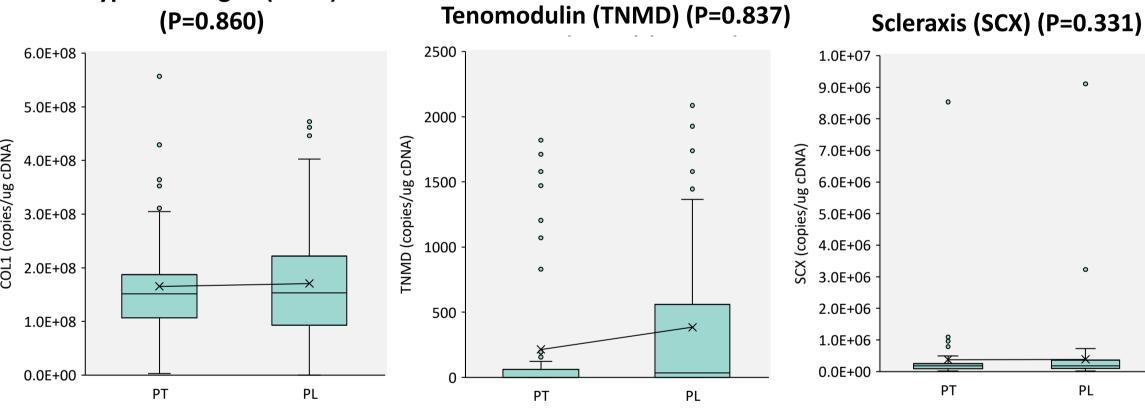

RESULTS


Growth Characteristics

No statistical difference in growth characteristics between tendon cells derived from PT and PL.

Purity, Potency and Identity of cells

No statistical difference in PPI quality attributes between tendon cells derived from PT and PL.



SAKOS

NGRESS

2023

Type 1 Collagen (COL1)

Impact of age

An age stratification analysis was completed: <35 (N=12), 35-45 (N=41), 45-60 (N=57), >60-yearsold (N=39). There was no statistically significant effect between age groups for growth characteristics and PPI quality attributes of tendon cells isolated from PT and PL.

CONCLUSION

- The PT or PL tendons are both suitable sources for the isolation of tendon cells for ATI.
- Tendon cells isolated from PT and PL were comparable in growth characteristics and PPI quality attributes.
- Age did not effect the growth characteristics and PPI quality attributes of tendon cells isolated from PT and PL.

REFERENCE LIST:

https://docs.google.com/document/d/1tjGp5qeK1kSllSghviERpkWArm0DwsoCoORBy3GlKyM/edit?usp=sharing

Boston Massachusetts June 18 – June 21

atistical Analysis						
owth parameters	P-value	Quality parameters	P-value			
vAverage PDT	0.879	^Ψ COL1	0.125			
^w Total Cell Yield	0.814	ΨSCX	0.505			
^v Cell Viability	0.388	ΨTNMD	0.419			
ne-way ANOVA		^Ψ One-way ANOVA				